Monatshefte für Chemie Chemical Monthly Printed in Austria

An Improved Stereocontrolled Route to *cis*-Erythrinanes by Combined Intramolecular *Strecker* and *Bruylants* Reaction

Eberhard Reimann* and Christian Ettmayr^a

Department Pharmazie – Zentrum für Pharmaforschung, Ludwig-Maximilians-Universität München, D-81377 München, Germany

Received February 2, 2004; accepted February 4, 2004 Published online June 24, 2004 © Springer-Verlag 2004

Summary. Condensation of (2-iodophenyl)ethylamines with cyclohexanoylacetaldehyde provided the corresponding aldimines which were reduced yielding secondary phenethylcyclohexanoylethylamines. These in turn were appropriate intermediates to prepare several erythrinanes by a sequential intramolecular *Strecker* and intramolecular *Bruylants* reaction. In contrast, the C-ring homologue schelhammeranes were not available on this route.

Keywords. Alkaloids; Spiro compounds; Diastereoselective cyclizations; Iodine-magnesium exchange reaction.

Introduction

Very recently we reported a new stereoselective approach to erythrinanes and several homologue ring systems. As educts different angularly arylated N-heterocycles were used, which in turn could be obtained in two steps from certain aminoalkyl cycloalkanones by intramolecular *Strecker* reaction followed by an intermolecular *Bruylants* reaction. The last step generating the C-ring framework was accomplished by *Friedel-Crafts* acylation [1].

A real drawback of this route was seen in the low yields of the *Bruylants* reaction. On the other hand the success of the synthesis depended on the intramolecular acylation of the aromatic subunit; thus dihydroxylated derivatives corresponding to the substitution pattern of the natural occurring erythrinanes as well as the parent compound lacking any phenolic group were not accessible.

To overcome these limitations an alternative strategy appeared very promising to generate the C-ring. Thus, apart from the *Strecker* reaction the *Bruylants* reac-

^{*} Corresponding author. E-mail: ebrei@cup.uni-muenchen.de

^a Part of PhD thesis, LMU München, D

tion was also intended to be carried out intramolecularly. This required the cyclohexanoylphenethylamines **6** as the key intermediates which should avoid not only the separate introduction of the N-9/C-12-bridge but also the crucial *Friedel-Crafts* acylation. Furthermore an intramolecular *Bruylants* reaction was expected to provide higher yields than those obtained in our preceding investigations [2]. In this paper, we would like to report the outcome of this strategy.

Results and Discussion

The synthetic pathway is outlined in Scheme 1. First our attention was turned to the required key intermediates, the cyclohexanoylphenethylamines **6**. We anticipated that they might be obtained by acylation of the halogenated phenethylamines **3** with the protected cyclohexanoylacetic acid **9** [2] followed by reduction of the amide **10** formed (Scheme 2). However, the latter defied all our attempts to react with *e.g.* lithium aluminum hydride, diisobutylaluminum hydride or borane, giving exclusively heterogeneous mixtures in which the desired product could not be detected. Therefore the carboxylic acid **9** was replaced by the corresponding aldehyde **4** giving the *Schiff* bases **5**. As indicated by IR- and ¹H NMR monitoring the condensation quantitatively occurred. TLC monitoring failed due to the decomposition of the product on silicagel. In contrast to the amides of the type **10**, the imines **5** were smoothly reduced with NaBH₄ affording the secondary amines **6** in satisfactory yields (60–67%; Scheme 1). Only in the case of **5d** the yield was

Scheme 1

An Improved Stereocontrolled Route to cis-Erythrinanes

somewhat lower (49%) due to the additional formation of a small amount (13%) of the dehalogenated amine **13** (Scheme 4 and Exp.)

The required starting cyclohexanoyl derivatives 4, 9 [2] and 11 [2], as well as the halogenated phenethylamines 3 were easily available. Thus the latter were prepared by reduction of the phenylacetonitriles 2 providing the corresponding known products 3a-3d. To our knowledge no preparation of 3e has yet been reported. The iodophenylacetonitriles 2c-2e in turn were obtained from the known educts 1a-1c (Scheme 1 and Exp.). Finally, the hithertoo unkwown cyclohexanoylacetaldehyde 4 was synthesized in excellent yields by LiAlH₄ reduction of the ester 11 affording the carbinol 12 followed by *Swern* or *PCC* oxidation according to Scheme 3. Attemps to reduce the carboxylic acid 9 or its azolid straight forward to the aldehyde 4 failed.

With the compounds **6** in hand, first the intramolecular *Strecker* reaction was investigated which was expected to provide the N-substituted octahydroindoles of the type **7**. Utilizing a similar procedure previously published [2] the amines **6** readily cyclized giving the α -aminonitriles **7** in nearly quantitative yields. The ¹³C NMR spectra of the products showed mixtures of diastereomers to be present in ratios from 2:1 to 3:1 (Exp.), but an assignment of the respective configuration failed.

In the final step the cyclization of the α -aminonitriles 7 by the *Bruylants* reaction was studied using similar conditions as previously reported [2]. Thus, in an

initially model reaction the bromo-compound **7a** was treated with magnesium to generate the *Grignard* reagent, which in turn should start the following *Bruylants* reaction. However, the desired cyclization did not occur. Only the educt and a substantial amount of the dehalogenated educt indicating that the *Grignard* reagent was really formed, could be detected by NMR and mass spectroscopy. Furthermore, an unidentified compound lacking the cyano-group was isolated.

Because of these complex reaction mixtures obtained, a more efficient and clean generation of the required Grignard reagents was desirable. The iodinemagnesium exchange reaction [3] using *i*-propylmagnesiumhalogenide appeared to be very promising for this purpose, since it occurs at low temperature and tolerates a number of magnesium sensitive functional groups, including the cyano group, even attached in the same molecule as in the present compounds 7b-7e. The following *Bruylants* reaction then should be initiated by elevating the temperature of the reaction mixture. According to this strategy we reacted the iodinated compounds 7b-7e with a small excess of *i*-propylmagnesiumchloride in THF at -50° C, then the reaction mixture was slowly warmed up to ambient temperature and finally to 60°C. Thus the cis-erythrinanes 8a-8c were stereoselectively obtained with surprisingly good yields (71-78%) in contrast to those (11-34%) obtained from the intermolecular reaction of α -aminonitriles with conventionally generated aryl Grignard reagents [2]. To our knowledge this cyclization represents the first example of a Bruylants reaction which has been carried out intramolecularly.

The *cis*-configuration of the title compounds was proved by NMR spectroscopy. Thus in the case of the dimethoxy derivative **8b** the ¹H and ¹³C spectra were completely in line with those published [4, 5]. Furthermore the spectra of the parent compound **8a** and of the methylenedioxy derivative **8c** lacking until now were – except for the data of the aromatic subunit – in good accordance with that of the *cis*-15-monomethoxyerythrinane [1]. Additionally their *cis*-configuration was confirmed by a positive NOE between 6-H and 14-H [1].

Unfortunately, the corresponding α -aminonitrile **7e** did not provide the expected schelhammerane I. This was not surprising because it is well known, that the construction of the C-homoerythrinane framework is far more difficult than that of the erythrinane, that is, methods developed for the synthesis of erythrinanes are not automatically transferable to schelhammerane synthesis. This substantial difference concerning the synthesis of both ring systems is attributed to the skewed nature of the sevenmembered ring [6]. In this connection MMX force field calculations [7] are of interest revealing the parent *cis*-erythrinane to be essentially more stable than the corresponding homologue schelhammerane. Assuming the chair form of the benzocycloheptene core [8] the strain energy difference was found to be $\Delta SE = 41.5$ kJ.

In conclusion, we established a new stereoselective approach to aromatic *cis*erythrinanes by a two fold intramolecular *Strecker* and *Bruylants* reaction. This route involving readily available starting materials and providing a satisfactory overall yield offered the possibility to prepare the parent framework as well as the dihydroxylated derivatives both not obtainable otherwise [1]. In contrast the aminonitrile **7e** failed to give the *Bruylants* reaction forming the homologue schelhammerane. Further investigations in this field are currently in progress.

Experimental

Melting points are measured with a Reichert hot-stage microscope and are uncorrected. IR: Perkin Elmer FT-IR Paragon 1000 and Jasco FT-IR 410. NMR: Jeol GSX 400 and Jeol GSX 500 (¹H: 400 and 500 MHz, ¹³C: 100 and 125 MHz, CDCl₃, *TMS* as internal reference); MS (70 eV): Hewlett Packard MS-Engine. Elemental analyses: Heraeus CHN-Rapid and Elementar Vario EL; the results are in good agreement with the calculated values. Thin layer chromatography (TLC): Al sheets Kieselgel 60 F₂₅₄ (Merck) and Al sheets Aluminiumoxid F₂₅₄ (Fluka), each thickness of layer 0.2 mm. Flash chromatography (FC): ICN-Sili Tech 32-63, 60 A and Aluminiumoxid Typ 507 C neutral 0.05–0.15 mm. **3b** is reported in Ref. [9], but preparation and analytical data are lacking (see below). **1a**, **1b**, and **2a** are commercial products; **2b** and **1c** were prepared according to Refs. [10] and [11].

General Procedure for the Synthesis of 2-(2-Iodophenyl)acetonitriles 2c-2e

To a solution of the phenylacetonitrile **1** (1 molequiv.) in anhydrous CH_2Cl_2 was added F_3CCO_2Ag and I_2 (1.1 molequiv. each) at $-5^{\circ}C$ and the mixture was stirred for 6 min. The end of the reaction was indicated by a light red colour of the mixture. The yellow solid formed was filtered off and washed with 50 cm³ of CH_2Cl_2 . The fitrate was consecutively washed with 3×100 cm³ of saturated $Na_2S_2O_3$ and 150 cm³ of brine, dried (Na_2SO_4), and evaporated *in vacuo*. The residue was crystallized from CH_3OH . The crystals were filtered off, washed with a small amount of ice-cold CH_3OH and dried *in vacuo*. When the crystallization failed or no further product could be obtained from the mother liquor, the solvent was removed *in vacuo* and the residue was purified by FC (eluents see TLC).

2-(2-Iodo-4,5-dimethoxyphenyl)acetonitrile (2c)

1a 8.05 g (45.5 mmol), $F_3CCO_2Ag 11.04 g (50.0 mmol)$, $I_2 12.7 g (50 mmol)$, $CH_2CI_2 100 \text{ cm}^3$; yield: 12.80 g (93%; Ref. [12]: 41%) colourless crystals; mp 118°C (Ref. [12]: 116–117°C); TLC (CH₂CI₂): $R_f = 0.52$; MS (CI): m/z (%) = 304 (M^{+•} + 1, 100), 277 (97), 244 (61), 177 (20); ¹H NMR data were in line with those reported in Ref. [12].

2-(2-Iodo-3,4-methylenedioxyphenyl)acetonitrile (2d, C9H6INO2)

1b 5.33 g (33.1 mmol), $F_3CCO_2Ag 8.04$ g (36.4 mmol), $I_2 9.25$ g (36.4 mmol), $CH_2Cl_2 75$ cm³; yield: 7.68 g (81%) colourless crystals; mp 84°C (CH₃OH); TLC (CH₂Cl₂): $R_f = 0.75$; MS (CI): m/z (%) = 288 (M^{+•} + 1, 100), 261 (75), 161 (8); IR (KBr): $\bar{\nu} = 2251$ (CN) cm⁻¹; ¹H NMR: $\delta = 7.27$ and 7.02 (2s, 2 arom H), 6.02 and 3.74 (2s, OCH₂O and CH₂CN) ppm; ¹³C NMR: $\delta = 149.07$, 148.51, 126.14, 118.78, 117.26, 109.15, 102.08, 87.08, 29.65 ppm.

3-(2-Iodo-4,5-dimethoxyphenyl)propionitrile (2e, C₁₁H₁₂INO₂)

1c 4.50 g (23.6 mmol), F₃CCO₂Ag 5.72 g (25.9 mmol), I₂ 6.58 g (25.9 mmol), CH₂Cl₂ 75 cm³; yield: 6.08 g (81%) colourless crystals; mp 77°C (*Et*₂O); TLC (*EtOAc:n*-hexane = 1:1): $R_{\rm f}$ = 0.68; MS (EI): m/z (%) = 317 (M^{+•}, 38), 277 (100), 234 (3), 150 (10); IR (KBr): $\bar{\nu}$ = 2245 (CN) cm⁻¹; ¹H NMR: δ = 7.23 and 6.83 (2s, 2 arom H), 3.87 and 3.86 (2s, 2OCH₃), 3.01 and 2.63 (2t, each J = 7.3 Hz, benzyl-CH₂ and CH₂CN) ppm; ¹³C NMR: δ = 149.58, 148.80, 132.86, 121.83, 118.82, 112.67, 87.39, 56.20, 56.04, 36.18, 18.19 ppm.

2-(2-Bromophenyl)ethylamine (3a)

Preparation according to Ref. [13] from **2a** 4.40 g (22.45 mmol)/ Et_2O 20 cm³, anhydrous AlCl₃ 3.60 (27.0 mmol), LiAlH₄ 1.33 g (27.0 mmol), Et_2O 110 cm³; purification by FC (CH₂Cl₂:CH₃OH:25%

 $NH_3 = 100:5:1$) instead of destillation; yield: 3.83 g (85%) colourless oil; TLC (eluent see FC): $R_f = 0.25$; ¹H and ¹³C NMR were in line with those reported [13].

General Procedure for the Synthesis of (2-Iodophenyl)ethylamines 3b-3e

To a solution of the nitrile **2** in anhydrous *THF* was added dropwise 1*M* borane complex in the same solvent (=BH₃-*THF*). After refluxing for 16h the mixture was cautiously diluted with CH₃OH under N₂ and ice cooling until no more foam was formed. The solvents were evaporated *in vacuo* and after dissolving the residue in 15 cm³ of CH₃OH evaporation was repeated. Now the residue was dissolved in 30 cm³ of 0.5 *N* HCl and the solution was refluxed for 1 h. After washing with 3×30 cm³ of *Et*₂O the mixture was rendered alkaline by 32% NaOH and extracted with 3×50 cm³ of *Et*₂O. The combined ether extracts were dried (Na₂SO₄) and evaporated *in vacuo*. The products thus obtained were purified by FC (eluents see TLC).

2-(2-Iodophenyl)ethylamine (3b)

2b 2.00 g (8.2 mmol), BH₃-*THF* 20 cm³ (20 mmol), *THF* 10 cm³; yield: 1.66 g (82%) colourless oil; TLC (CH₂Cl₂:CH₃OH:25% NH₃ = 100:5:1): R_f = 0.27; MS (EI): m/z (%) = 246 (M^{+•} - 1, 100), 231 (15), 217 (46), 104 (23), 91 (30), 90 (32); ¹H NMR: δ = 7.82 (dd, J = 7.7/1.0 Hz, arom H), 7.28 (dt, J = 7.5/1.0 Hz, arom H), 7.22 (d, J = 7.5/1.6 Hz, arom H), 6.90 (dt, J = 7.7/1.6 Hz, arom H), 2.98–2.91 (t, J = 7.2 Hz, benzyl-CH₂), 2.91–2.84 (t, J = 7.2 Hz, N-CH₂) ppm; ¹³C NMR: δ = 142.37, 139.56, 129.82, 128.29, 128.04, 100.82, 44.74, 42.35 ppm. **3b**-HCl: see Ref. [14].

2-(2-Iodo-4,5-dimethoxyphenyl)ethylamine (3c)

2c 5.00 g (16.5 mmol), BH₃-*THF* 40 cm³ (40 mmol), *THF* 25 cm³; yield: 4.05 g (80%) colourless oil; TLC (CH₂Cl₂:CH₃OH:25% NH₃ = 100:8:0.5): $R_{\rm f} = 0.14$; MS (CI): m/z (%) = 308 (M^{+•} + 1, 100), 278 (13), 180 (67), 164 (53), 152 (45); ¹H NMR: $\delta = 7.22$ and 6.75 (2s, 2 arom H), 3.86 and 3.85 (2s, 2OCH₃), 2.93 and 2.82 (2t, each J = 7.0 Hz, benzyl–CH₂ and N–CH₂), 1.40 (br s, NH₂) ppm. Analytical data are reported only for the hydrochloride and for the *N*-acetylderivatives (see Refs. [12, 15]).

2-(2-Iodo-3,4-methylenedioxyphenyl)ethylamine (3d)

2d 7.00 g (24.4 mmol), BH₃-*THF* 70 cm³ (70 mmol), *THF* 50 cm³; yield: 5.86 g (83%) colourless oil; TLC (CH₂Cl₂:CH₃OH:25% NH₃ = 100:8:0.5): $R_f = 0.22$; MS (CI): m/z (%) = 292 (M^{+•} + 1, 100), 275 (21), 164 (35), 148 (40); ¹H and ¹³C NMR data were in line with those published in Ref. [16].

2-(2-Iodo-4,5-dimethoxyphenyl)propylamine (3e, C₆H₁₁INO₂)

2e 3.50 g (11.0 mmol), BH₃-*THF* 35 cm³ (35 mmol), *THF* 20 cm³; yield: 3.18 g (90%) colourless amorphous solid; TLC (CH₂Cl₂:CH₃OH:25% NH₃ = 100:10:1): $R_{\rm f}$ = 0.25; MS (CI): m/z (%) = 322 (M^{+•} + 1, 87), 195 (100), 194 (70), 178 (32), 166 (10); ¹H NMR: δ = 7.20 and 6.74 (2s, 2 arom H), 3.85 and 3.84 (2s, 20CH₃), 2.22 (t, *J* = 7.0 Hz, benzyl–CH₂), 2.71–2.68 (m, N–CH₂), 1.77–1.69 (m, 4H, CCH₂C and NH₂) ppm; ¹³C NMR: δ = 149.35, 147.75, 137.08, 121.63, 112.13, 87.89, 56.15, 55.93, 41.64, 37.78, 34.43 ppm.

N-[2-(2-Bromophenyl)ethyl]-2-(1,4-dioxaspiro[4.5]dec-6-yl)acetamide (**10**, C₁₈H₂₄BrNO₃)

Preparation according to the general procedure reported in Ref. [2] from (1,4-dioxaspiro[4.5]dec-6-yl)acetic acid [2] 1.00 g (5.00 mmol), CDI 794 mg (4.90 mmol), **3a** 1.01 g (5.05 mmol), *THF* 20 cm³.

An Improved Stereocontrolled Route to cis-Erythrinanes

After refluxing the mixture for 8 h the solvent was removed *in vacuo* and the residue was dissolved in 25 cm³ of CH₂Cl₂. The solution was consecutively washed with 3×15 cm³ of H₂O, 15 cm³ of 1 *N* HCl, and 2×25 cm³ of saturated Na₂CO₃ solution, dried (Na₂SO₄), and evaporated *in vacuo*. Further purification was performed as reported. Yield: 1.12 g (58%) colourless crystals; mp 90°C (*Et*₂O); TLC (CH₂Cl₂:CH₃OH = 100:5): R_f = 0.51; MS (CI): m/z (%) = 384 (M^{+•} + 1, 97), 382 (M^{+•} + 1, 100), 212 (5), 183 (15); IR (film): $\bar{\nu}$ = 3289 (NH), 1642 (amide I), 1551 (amide II) cm⁻¹; ¹H NMR: δ = 7.53 (br d, *J* = 7.9 Hz, arom H), 7.26–7.22 (m, 2 arom H), 7.09 (ddd, *J* = 7.9/5.6/3.5 Hz, arom H), 5.81 (br s, NH), 3.97–3.79 (m, OCH₂–CH₂O), 3.53 (ddd, *J* = 13.0/7.0/4.2 Hz, NCH₂), 2.97 (t, *J* = 7.0 Hz, benzyl-CH₂), 2.49 and 1.87 (2dd, *J* = 14.5/4.8 Hz and 14.5/8.4 Hz, 2H, CH₂CON), 2.17–2.10 (m, CH), 1.81–1.73 and 1.67–1.56 (2m, each 2H), 1.52–1.40 (m, 1H), 1.38–1.24 (m, 3H) ppm; ¹³C NMR: δ = 172.85, 138.44, 132.89, 130.98, 128.17, 127.55, 124.62, 110.11, 64.55, 64.47, 41.72, 39.14, 36.69, 35.80, 34.26, 30.15, 24.52, 23.71 ppm.

2-(1,4-Dioxaspiro[4.5]dec-6-yl)ethanol (12), Modified Procedure According to Ref. [17]

To a solution of 9.12 g (40 mmol) of the cyclohexanone ester **11** [2] in 100 cm³ of anhydrous Et_2O was portionwise added 3.04 g (80 mmol) of LiAlH₄ under N₂, ice cooling, and stirring. After removing of the ice bath the mixture was allowed to return to ambient temperature followed by refluxing for 30 min. The reaction was quenched by cautiously pouring the ice-cold mixture into 2*N* NaOH and Et_2O (100 cm³ in each case) under N₂, ice cooling, and stirring. The organic phase was separated and the aqueous layer was extracted with 3×100 cm³ of Et_2O . The combined organic layers were washed with 250 cm³ of brine, dried (Na₂SO₄), and evaporated *in vacuo*. The remaining product was used for the next step without further purification. Yield: 7.16 g (96%) colourless oil; MS (EI): m/z (%) = 186 (M^{+•}, 5), 155 (35), 125 (12), 99 (100), 55 (62); IR and ¹H NMR data were in line with those reported [17, 18]; ¹³C NMR: $\delta = 110.58$, 64.60, 64.33, 61.56, 41.86, 34.72, 32.24, 30.46, 24.55, 23.68 ppm.

(1,4-Dioxa-spiro[4.5]dec-6-yl)acetaldehyde (4, C₁₀H₁₆O₃)

Method A (*Swern* oxidation): To a solution of 2.16 cm³ (23.8 mmol) of oxalyl chloride in 40 cm³ of anhydrous CH₂Cl₂ was slowly added a solution of 3.7 cm³ (47.5 mmol) of *DMSO* in 10 cm³ of the same solvent at -70° C under N₂. After stirring for 30 min first a solution of 4.00 g (21.5 mmol) of the alcohol **12** in 20 cm³ of CH₂Cl₂ then, after stirring for further 30 min, 15.2 cm³ (~109 mmol) of triethyl amine were added dropwise. After warming up to ambient temperature the mixture was diluted with 70 cm³ of H₂O, the organic phase was separated, and the aqueous layer was extracted with 2 × 50 cm³ of CH₂Cl₂. The combined CH₂Cl₂ extracts were washed with saturated Na₂CO₃ solution, dried (Na₂SO₄), and evaporated *in vacuo*. Yield: 3.76 g (95%) colourless oil.

Method B (oxidation with pyridinium chlorochromate (*PPC*)): To a suspension of 2.68 g (12.4 mmol) of *PPC* and 203 mg (2.48 mmol) of sodium acetate in 15 cm³ of anhydrous CH₂Cl₂ was rapidly added a solution of 1.54 g (8.28 mmol) of **12** in 5 cm³ of the same solvent. After stirring for 2 h at ambient temperature the mixture was diluted with 60 cm³ of *Et*₂O. The organic layer was decanted and the black residue washed with 3×30 cm³ of *Et*₂O. The combined organic phases were rapidly filtered by a short column (SiO₂, $h \times d = 3 \times 7$ cm), and the eluat was evaporated *in vacuo*. Yield: 1.37 g (90%) colourless oil; IR (film): $\bar{\nu} = 1720$ (C=O) cm⁻¹; MS (CI): m/z (%) = 185 (M^{+•} + 1, 22), 183 (63), 155 (21), 139 (100), 125 (42), 99 (28); ¹H NMR: $\delta = 9.67$ (dd, J = 3.7/1.7 Hz, CHO), 4.00–3.87 and 3.84–3.75 (2m, OCH₂CH₂O), 2.50 and 2.14 (2ddd, J = 15.9/7.7/3.7 and 15.9/5.5/1.7 Hz, 2H, CH₂CO), 2.31 (dddd, J = 11.6/7.7/5.5/1.7 Hz, CH), 1.84–1.64 and 1.55–1.25 (2m, each 4H) ppm; ¹³C NMR: $\delta = 201.85$, 109.71, 64.74, 64.11, 44.40, 40.47, 34.55, 30.49, 24.89, 23.68 ppm.

General Procedure for the Synthesis of Imines 5

A mixture of the aldehyde **4** and the primary amine **3** (each 1 molequiv.) in anhydrous toluene was refluxed with water separation by a *Dean-Stark* trap until the reaction was completed (about 2 h, IR monitoring). Evaporation of the solvent *in vacuo* afforded yellow oils in nearly quantitative yields.

[2-(2-Bromophenyl)ethyl][2-(1,4-dioxaspiro[4.5]dec-6-yl)ethylidene]amine (**5a**, C₁₈H₂₄BrNO₂)

4 877 mg (4.77 mmol), **3a** 954 mg (4.77 mmol), toluene 60 cm³; yield: 1.73 g (99%); IR (film): $\bar{\nu} = 1667$ (N=C) cm⁻¹; MS (CI): m/z (%) = 368 (M^{+•} + 1, 87), 366 (M^{+•} + 1, 100), 286 (7), 227 (14), 225 (14), 196 (27), 146 (22), 99 (14); ¹H NMR: $\delta = 7.57 - 7.53$ (m, N=CH), 7.53 - 7.50 (m, 1 arom H), 7.24 - 7.16 and 7.07 - 7.01 (2m, 2 + 1 arom H), 3.96 - 3.82 (m, OCH₂CH₂O), 3.60 (dt, J = 7.5/0.8 Hz, NCH₂), 3.02 (t, J = 7.5 Hz, benzyl-CH₂), 2.47 (ddt, J = 14.7/4.9/1.0 Hz, 1H, N=C-CH₂), 2.04 (ddd, J = 14.7/8.1/5.8 Hz, 1H, N=CH-CH₂), 1.92 - 1.84 (m, CH), 1.77 (ddt, J = 12.8/3.8/1.3 Hz, 1H), 1.68 - 1.57 (m, 3H), 1.54 - 1.41 (m, 1H), 1.41 - 1.15 (m, 3H) ppm.

[2-(1,4-Dioxaspiro[4.5]dec-6-yl)ethylidene][2-(2-iodophenyl)ethyl]amine (**5b**, C₁₈H₂₄INO₂)

4 1.00 g (5.43 mmol), **3b** 1.34 g (5.43 mmol), toluene 60 cm³; yield: 2.20 g (98%); IR (film): $\bar{\nu} = 1667$ (N=C) cm⁻¹; MS (CI): m/z (%) = 414 (M^{+•} + 1, 100), 273 (8), 198 (14), 146 (7); MS (EI): m/z (%) = 286 (M^{+•} - I, 22), 272 (42), 224 (23), 196 (62), 146 (72), 124 (33), 104 (37), 99 (24), 56 (100), 55 (52); ¹H NMR (500 MHz): $\delta = 7.80$ (dd, J = 7.8/1.2 Hz, 1 arom H), 7.57 (br t, J = 5.1 Hz, N=CH), 7.25 (dt, J = 7.5/1.2 Hz, 1 arom H), 7.20 (dd, J = 7.5/1.8 Hz, 1 arom H), 6.88 (dt, J = 7.8/1.8 Hz, 1 arom H), 3.95–3.88 and 3.87–3.84 (2m, 3 + 1H, OCH₂CH₂O), 3.59 (br t, J = 7.5 Hz, NCH₂), 3.01 (dt, J = 7.5/1.8 Hz, 1H, N = C-CH₂), 2.49 (dt, J = 14.7/4.9 Hz, 1H, N = C-CH₂), 2.10–2.02 (ddd, J = 14.5/8.3/5.8 Hz, 1H, N = C-CH₂), 1.93–1.86 (m, CH), 1.80–1.74 (ddt, J = 13.0/3.7/1.1 Hz, 1H), 1.66–1.59 and 1.53–1.43 (2m, 3 + 1H), 1.39–1.28 and 1.27–1.17 (2m, 2 + 1H) ppm; ¹³C NMR (100 MHz): $\delta = 166.05$, 142.48, 139.43, 130.39, 128.14, 127.92, 110.16, 100.69, 64.83, 64.49, 60.83, 42.38, 42.00, 35.63, 34.87, 29.87, 24.68, 23.80 ppm.

[2-(1,4-Dioxaspiro[4.5]dec-6-yl)ethylidene][2-(2-iodo-4,5-dimethoxyphenyl)ethyl]amine (**5c**, C₂₀H₂₈INO₄)

4 887 mg (4.82 mmol), **3c** 1.48 g (4.82 mmol), toluene 60 cm³; yield: 2.23 g (98%); IR (film): $\bar{\nu} = 1666$ (N=C) cm⁻¹; MS (CI): m/z (%) = 474 (M^{+•} + 1, 100), 346 (56), 196 (42), 125 (13), 99 (16); ¹H NMR (500 MHz): $\delta = 7.54$ (br t, J = 5.1 Hz, N=CH), 7.20 and 6.72 (2s, 2 arom H), 3.98–3.84 (m, OCH₂CH₂O), 3.84 and 3.83 (2s, 2OCH₃), 3.57 (br t, J = 7.3 Hz, N–CH₂), 2.95 (dt, J = 7.3/1.6 Hz, benzyl–CH₂), 2.48 (dt, J = 14.7/4.9 Hz, 1H, N=C–CH₂), 2.09–2.00 (ddd, J = 14.5/8.2/5.9 Hz, 1H, N=C–CH₂), 1.92–1.83 (m, CH), 1.80–1.73 (ddt, J = 12.8/3.8/1.4 Hz, 1H), 1.67–1.56 and 1.53–1.40 (2m, 3 + 1H), 1.39–1.28 and 1.28–1.15 (2m, 2 + 1H) ppm; ¹³C NMR (100 MHz): $\delta = 166.12$, 149.06, 147.91, 134.86, 121.55, 113.29, 110.11, 88.02, 64.82, 64.38, 61.39, 56.09, 55.85, 42.41, 41.50, 35.61, 34.86, 29.89, 24.66, 23.77 ppm.

$$\label{eq:constraint} \begin{split} & [2-(1,4-Dioxaspiro[4.5]dec-6-yl)ethylidene][2-(2-iodo-4,5-methylenedioxyphenyl)\\ & ethyl]amine~(\textbf{5d},~C_{19}H_{24}INO_4) \end{split}$$

4 632 mg (3.44 mmol), **3d** 1.00 g (3.44 mmol), toluene 50 cm³; yield: 1.54 g (98%); IR (film): $\bar{\nu} = 1666$ (N=C) cm⁻¹; MS (CI): m/z (%) = 458 (M^{+•} + 1, 100), 330 (72), 196 (42), 125 (60), 99 (16); ¹H NMR

(500 MHz): $\delta = 7.59-7.57$ (m, N=CH), 7.22 and 6.73 (2s, 2H), 5.93 and 5.92 (2d, each J = 1.4 Hz, OCH₂O), 3.98–3.88 and 3.88–3.85 (2m, 3 + 1H, OCH₂CH₂O), 3.53 (br t, J = 7.4 Hz, N–CH₂), 2.93 (dt, J = 7.4/1.5 Hz, benzyl–CH₂), 2.49 (dt, J = 14.8/4.9 Hz, 1H, N=C–CH₂), 2.10–2.04 (ddd, J = 14.7/8.1/5.9 Hz, 1H, N=C–CH₂), 1.94–1.88 (m, CH), 1.90 (ddt, J = 13.1/3.8/1.4 Hz, 1H), 1.67–1.59 and 1.53–1.43 (2m, 3 + 1H), 1.40–1.28 and 1.28–1.19 (2m, 2 + 1H) ppm; ¹³C NMR (100 MHz): $\delta = 166.10$, 148.27, 146.98, 135.77, 118.51, 110.21, 110.17, 101.46, 87.94, 64.84, 64.51, 61.04, 42.42, 41.88, 35.64, 34.86, 29.89, 24.67, 23.83 ppm.

$$\label{eq:constraint} \begin{split} & [2-(1,4-Dioxaspiro[4.5]dec-6-yl)ethylidene] [3-(2-iodo-4,5-dimethoxyphenyl) \\ & propyl]amine~(\textbf{5e},~C_{21}H_{30}INO_4) \end{split}$$

4 950 mg (5.16 mmol), **3e** 1.66 g (5.16 mmol), toluene 60 cm³; yield: 2.44 g (97%); IR (film): $\bar{\nu} = 1666$ (N=C) cm⁻¹; MS (CI): m/z (%) = 488 (M^{+•} + 1, 100), 360 (32), 322 (20), 125 (20); ¹H NMR (400 MHz): $\delta = 7.71-7.68$ (m, N=CH), 7.20 and 6.74 (2s, 2 arom H), 3.96–3.88 (m, OCH₂CH₂O), 3.86 and 3.84 (2s, 2OCH₃), 3.43 (t, J = 6.8 Hz, N–CH₂), 2.67–2.63 (m, benzyl–CH₂), 2.54 (tt, J = 14.6/5.0 Hz, 1H, N=C–CH₂), 2.11 (ddd, J = 14.6/8.2/5.7 Hz, 1H, N=C–CH₂), 2.00–1.93 (m, CH), 1.92–1.83 and 1.83–1.58 (2m, 2 + 4H), 1.55–1.43 and 1.43–1.19 (2m, 1 + 3H) ppm; ¹³C NMR (100 MHz): $\delta = 165.42$, 149.34, 147.74, 137.22, 121.69, 112.18, 110.23, 87.95, 64.85, 64.54, 60.61, 56.16, 55.91, 42.47, 38.14, 35.69, 34.89, 31.58, 30.02, 24.75, 23.81 ppm.

General Procedure for the Synthesis of Secondary Amines 6

The crude imine **5** (see above) was dissolved in CH₃OH and NaBH₄ was added under ice cooling. After refluxing the mixture for 2 h the solvent was removed *in vacuo*. The residue was diluted with 50 cm³ of H₂O and extracted with 3×50 cm³ of *Et*₂O. The combined organic extracts were dried (Na₂SO₄) and evaporated *in vacuo*. The residue was purified by FC (eluents were the same as used for TLC).

[2-(2-Bromophenyl)ethyl][2-(1,4-dioxaspiro[4.5]dec-6-yl)ethyl]amine (**6a**, C₁₈H₂₆BrNO₂)

5a 1.73 g (4.72 mmol), NaBH₄ 538 mg (14.2 mmol), CH₃OH 70 cm³; yield: 1.14 g (65%) colourless oil; TLC (CH₂Cl₂:CH₃OH:25% NH₃ = 100:5:0.5): R_f =0.28; IR (film): $\bar{\nu}$ = 3321 (NH) cm⁻¹; MS (CI): m/z (%) = 370 (M^{+•} + 1, 100, ⁸¹Br), 368 (M^{+•} + 1, 100, ⁷⁹Br), 198 (79), 138 (17); ¹H NMR (400 MHz): δ = 7.53 (br d, J = 7.8 Hz, arom H), 7.26–7.22 (m, 2 arom H), 7.06 (ddd, J = 7.8/6.0/3.1 Hz, arom H), 3.98–3.89 (m, OCH₂CH₂O), 2.97–2.92 (m, benzyl–CH₂), 2.90–2.85 (m, aryl–C–CH₂N), 2.72 (ddd, J = 11.3/9.9/5.3 Hz, 1H, CH₂N), 2.61 (ddd, J = 11.3/9.4/6.4 Hz, 1H, CH₂N), 1.83–1.73 and 1.66–1.57 (2m, each 3H), 1.55–1.40 and 1.40–1.17 (2m, 2 + 4H) ppm; ¹³C NMR (100 MHz): δ = 139.52, 132.84, 130.70, 127.76, 127.37, 124.58, 110.66, 64.72, 64.55, 49.48, 48.24, 42.65, 36.72, 34.57, 29.61, 28.98, 24.45, 23.77 ppm.

[2-(1,4-Dioxaspiro[4.5]dec-6-yl)ethyl][2-(2-iodophenyl)ethyl]amine (6b, C₁₈H₂₆INO₂)

5b 2.20 g (5.32 mmol), NaBH₄ 606 mg (16.0 mmol), CH₃OH 70 cm³; yield: 1.48 g (66%) colourless oil; TLC (CH₂Cl₂:CH₃OH:25% NH₃ = 100:4:0.5): $R_{\rm f}$ =0.41; IR (film): $\bar{\nu}$ =3321 (NH) cm⁻¹; MS (CI): m/z (%) = 416 (M^{+•} + 1, 100), 288 (4), 198 (77); ¹H NMR (500 MHz): δ = 7.81 (dd, J = 7.7/1.2 Hz, arom H), 7.27 (dt, J = 7.6/1.2 Hz, arom H), 7.23 (dd, J = 7.6/1.9 Hz, arom H), 6.89 (dt, J = 7.7/1.9 Hz, arom H), 3.98–3.88 (m, OCH₂CH₂O), 2.94–2.89 and 2.87–2.83 (2m, benzyl–CH₂ and aryl–C–CH₂N), 2.72 (ddd, J = 11.3/9.9/5.3 Hz, 1H, CH₂N), 2.62 (ddd, J = 11.3/9.4/6.4 Hz, 1H, CH₂N), 1.83–1.72 and 1.66–1.57 (2m, each 3H), 1.53–1.43 and 1.38–1.18 (2m, 1 + 5H) ppm; ¹³C NMR (100 MHz): δ = 142.80, 139.54, 129.77, 128.31, 127.95, 110.66, 100.67, 64.76, 64.60, 49.78, 48.30, 42.67, 41.26, 34.61, 29.62, 28.99, 24.48, 23.80 ppm.

$$\label{eq:constraint} \begin{split} & [2-(1,4-Dioxaspiro[4.5]dec-6-yl)ethyl][2-(2-iodo-4,5-dimethoxyphenyl)ethyl]amine \\ & (\mathbf{6c},\ C_{20}H_{30}INO_4) \end{split}$$

5c 2.23 g (4.71 mmol), NaBH₄ 537 mg (14.1 mmol), CH₃OH 70 cm³; yield: 1.53 g (67%) colourless oil; TLC (CH₂Cl₂:CH₃OH:25% NH₃ = 100:5:0.5): $R_f = 0.28$; IR (film): $\bar{\nu} = 3316$ (NH) cm⁻¹; MS (CI): m/z (%) = 476 (M^{+•} + 1, 64), 348 (7), 277 (5), 198 (100); ¹H NMR (500 MHz): $\delta = 7.21$ and 6.77 (2s, 2 arom H), 3.99–3.88 (m, OCH₂CH₂O), 3.85 and 3.84 (2s, 2OCH₃), 2.89–2.79 (m, 4H), 2.73 (ddd, J = 11.3/9.8/5.3 Hz, 1H, CH₂N), 2.62 (ddd, J = 11.3/9.3/6.4 Hz, 1H, CH₂N), 1.84–1.72 and 1.68–1.56 (2m, 3 + 4H), 1.54–1.41 and 1.38–1.16 (2m, 1 + 4H) ppm; ¹³C NMR (100 MHz): $\delta = 149.32$, 147.97, 135.18, 121.75, 112.62, 110.66, 88.05, 64.76, 64.60, 56.16, 55.94, 49.99, 48.35, 42.68, 40.79, 34.59, 29.67, 28.99, 24.49, 23.80 ppm.

$$\label{eq:constraint} \begin{split} & [2-(1,4-Dioxaspiro[4.5]dec-6-yl)ethyl][2-(2-iodo-4,5-methylenedioxyphenyl)ethyl]amine \\ & (\mathbf{6d},\ C_{19}H_{26}INO_4) \ and \ [2-(1,4-Dioxaspiro[4.5]dec-6-yl)ethyl][2-(3,4-methylenedioxyphenyl)ethyl]amine \\ & [enedioxyphenyl)ethyl]amine \ (\mathbf{13},\ C_{19}H_{27}NO_4) \end{split}$$

5d 1.54 g (3.37 mmol), NaBH₄ 384 mg (10.1 mmol), CH₃OH 60 cm³. 1. Fraction **6d**: yield: 782 mg (49%) colourless oil; TLC (CH₂Cl₂:CH₃OH:25% NH₃ = 100:8:0.5): $R_{\rm f}$ =0.38; IR (film): $\bar{\nu}$ =3315 (NH) cm⁻¹; MS (CI): m/z (%) = 460 (M^{+•} + 1, 38), 332 (11), 261 (2), 198 (100); ¹H NMR (400 MHz): δ = 7.23 and 6.77 (2s, 2H), 5.94 (s, 2H), 3.99–3.91 (m, OCH₂CH₂O), 2.88–2.77 (m, 4H), 2.73 (ddd, J=11.5/9.9/5.3 Hz, 1H, CH₂N), 2.62 (ddd, J=11.5/9.6/6.6 Hz, 1H, CH₂N), 1.85–1.72 and 1.67–1.58 (2m, 4+3H), 1.54–1.40 and 1.39–1.18 (2m, 1+4H) ppm; ¹³C NMR (100 MHz): δ = 148.45, 146.92, 135.85, 118.63, 110.65, 109.64, 101.52, 87.86, 64.77, 64.60, 49.82, 48.26, 42.68, 40.87, 34.59, 29.68, 28.84, 24.50, 23.79 ppm.

2. Fraction **13**: yield: 152 mg (13%); TLC (CH₂Cl₂:CH₃OH:25% NH₃ = 100:8:0.5): $R_f = 0.32$; IR (film): $\bar{\nu} = 3316$ (NH) cm⁻¹; MS (CI): m/z (%) = 344 (M^{+•} + 1, 100), 198 (44); MS (EI): m/z (%) = 198 (100), 138 (97), 125 (12), 99 (7), 55 (41); ¹H NMR (400 MHz): $\delta = 6.74$ (dd, J = 7.9/0.9 Hz, 1H), 6.71 (s, 1H), 6.66 (d, J = 7.9 Hz, 1H), 5.92 (d, J = 1.3 Hz, OCH₂O), 3.98–3.87 (m, OCH₂CH₂O), 2.90–2.79 (m, aryl–C–CH₂N), 2.78–2.72 (m, benzyl–CH₂), 2.73–2.65 (m, 1H, CH₂N), 2.63–2.55 (ddd, J = 11.2/9.4/6.3 Hz, 1H, CH₂N), 2.24 (br s, NH), 1.84–1.70 and 1.66–1.54 (2m, each 3H), 1.53–1.41 and 1.38–1.16 (2m, 1+4H) ppm; ¹³C NMR (100 MHz): $\delta = 147.66$, 145.90, 133.64, 121.55, 110.61, 109.06, 108.24, 100.80, 64.75, 64.57, 51.18, 48.27, 42.68, 35.77, 34.57, 29.66, 28.67, 24,49, 23.77 ppm.

[2-(1,4-Dioxaspiro[4.5]dec-6-yl)ethyl][3-(2-iodo-4,5-dimethoxyphenyl)propyl]amine (**6e**, C₂₁H₃₂INO₄)

5e 2.44 g (5.01 mmol), NaBH₄ 570 mg (15.0 mmol), CH₃OH 70 cm³; yield: 1.38 g (55%) colourless oil; TLC (CH₂Cl₂:CH₃OH:25% NH₃ = 100:5:0.5): $R_{\rm f}$ = 0.37; IR (film): $\bar{\nu}$ = 3317 (NH) cm⁻¹; MS (CI): m/z (%) = 490 (M^{+•} + 1, 100), 362 (56), 198 (20); ¹H NMR (400 MHz): δ = 7.20 and 6.74 (2s, 2H), 4.00–3.91 (m, OCH₂-CH₂O), 3.85 and 3.84 (2s, 2OCH₃), 2.74–2.65 (m, 5H), 2.59 (ddd, J = 11.2/9.4/6.5 Hz, 1H), 1.85–1.72 and 1.67–1.42 (2m, each 5H), 1.39–1.19 (m, 4H) ppm; ¹³C NMR (100 MHz): δ = 149.32, 147.73, 137.24, 121.81, 112.10, 110.68, 87.90, 64.78, 64.63, 56.15, 55.91, 49.37, 48.51, 42.75, 38.20, 34.65, 30.96, 29.67, 29.02, 24.54, 23.81 ppm.

General Procedure for the Synthesis of α -Aminonitriles 7 by Intramolecular Strecker Reaction

The solution of amine 6 (1 molequiv.) in H₂O and 2*N* HCl (2 molequiv.) was stirred at 60°C (bath temperature) for 1.5 h. After cooling the mixture to ambient temperature, an aqueous solution of KCN (2 molequiv.) was dropwise added over a period of 20 min under vigorous stirring. Thereafter the

reaction mixture exhibited a pH of 7–8; deviations of this value were corrected by addition of a small amount of 0.5 N HCl or KCN. Stirring of the mixture was continued for 1 h. The oily product separated was dissolved in 30 cm³ of Et_2 O. The aqueous layer was rendered alkaline by saturated Na₂CO₃ solution and extracted with 3×30 cm³ of Et_2 O. The combined organic layers were washed with 20 cm³ of brine, dried (Na₂SO₄), and evaporated *in vacuo*. The crude products were found to be remarkably pure and were used for the next step. Attempted further purification by FC failed because of the rapidly occurring decomposition of the products.

$\label{eq:local_$

6a 468 mg (1.27 mmol), 40 cm³ H₂O, 2*N* HCl 1.27 cm³ (2.54 mmol), KCN 165 mg (2.54 mmol)/3 cm³ H₂O; yield: 409 mg (97%) light yellow oil; TLC (Al₂O₃; *n*-hexane: Et_2 O = 9:1): R_f = 0.54; IR (film): $\bar{\nu}$ = 2214 (C=N) cm⁻¹; MS (CI): m/z (%) = 308 (M^{+•} + 1 - HCN, 91; ⁸¹Br), 306 (M^{+•} + 1 - HCN, 100; ⁷⁹Br), 226 (8), 136 (61); ¹H NMR (400 MHz): δ = 7.52 (m, arom H), 7.24–7.20 (m, 2 arom H), 7.09–7.03 (m, arom H), 3.51–3.35, 3.08–2.84, and 2.63–2.51 (3m, 1 + 3 + 2H), 2.24–2.12 (m, 1.66H), 1.98 (dt, *J* = 14.5/3.3 Hz, 0.66H), 1.96–1.90 (m, 0.33H), 1.88–1.76 (m, 1H), 1.74–1.59, 1.59–1.42, 1.35–1.10, and 1.06–0.94 (4m, 1.66 + 2.33 + 2.66 + 0.66H) ppm; ¹³C NMR (100 MHz): δ = 139.60, 139.29, 132.78, 130.96, 130.69, 127.88, 127.33, 127.23, 124.50, 124.42, 120.72, 118.14, 69.08, 64.49, 50.39, 50.10, 49.92, 49.75, 48.10, 43.38, 35.46, 35.41, 33.64, 30.19, 28.36, 27.83, 27.25, 26.57, 25.20, 24.29, 22.29, 18.90 pmm.

$\label{eq:logithty} \begin{array}{l} 1-[2-(2-Iodophenyl)ethyl]octahydroindole-7a-carbonitrile \ (7:3\ mixture\ of\ diastereomers) \ (7b,\ C_{17}H_{21}IN_2) \end{array}$

6b 585 mg (1.41 mmol), 50 cm³ H₂O, 2*N* HCl 1.40 cm³ (2.80 mmol), KCN 184 mg (2.80 mmol)/5 cm³ H₂O; yield: 519 mg (97%) light yellow oil; TLC (Al₂O₃; *n*-hexane: $Et_2O = 9:1$): $R_f = 0.61$; IR (film): $\bar{\nu} = 2213$ (C \equiv N) cm⁻¹; MS (CI): m/z (%) = 354 (M^{+•} + 1 - HCN, 100), 226 (8), 163 (17), 136 (37); ¹H NMR (400 MHz): $\delta = 7.80$ (dd, J = 7.9/0.8 Hz, arom H), 7.29–7.20 and 6.92–6.86 (2m, 2 + 1 arom H), 3.47–3.34, 3.05–2.80, 2.64–2.55, and 2.55–2.47 (4m, 1 + 3 + 1 + 1H), 2.24–2.11 (m, 1.7H), 2.00 (dt, J = 14.4/3.3 Hz, 0.7H), 1.97–1.89 and 1.87–1.75 (2m, 0.3 + 0.9H), 1.75–1.58 (m, 4H), 1.38–1.11 and 1.11–0.97 (2m, 2.7 + 0.7H) ppm; ¹³C NMR (100 MHz): $\delta = 142.83$, 142.56, 139.47, 130.05, 129.78, 128.26, 128.14, 128.04, 128.03, 120.73, 118.15, 100.60, 100.43, 69.03, 64.49, 50.69, 50.20, 50.13, 49.79, 48.07, 43.33, 39.90, 39.87, 33.62, 30.16, 28.37, 27.83, 27.25, 26.57, 25.19, 24.29, 22.29, 18.96 ppm.

1-[2-(2-Iodo-4,5-dimethoxyphenyl)ethyl]octahydroindole-7a-carbonitrile (7:3 mixture of diastereomers) (7c, $C_{19}H_{25}IN_2O_2$)

6c 573 mg (1.21 mmol), 50 cm³ H₂O, 2*N* HCl 1.20 cm³ (2.40 mmol), KCN 156 mg (2.40 mmol)/5 cm³ H₂O; yield: 527 mg (99%) light yellow oil; TLC (Al₂O₃; *n*-hexane: $Et_2O = 9:1$): $R_f = 0.61$; IR (film): $\bar{\nu} = 2253$, 2213 (C \equiv N) cm⁻¹; MS (CI): m/z (%) = 414 (M^{+•} + 1 – HCN, 100), 286 (31), 164 (6), 136 (63); ¹H NMR (400 MHz): $\delta = 7.27$ (s, arom H), 6.75 and 6.74 (2s, 0.3 + 0.7 arom H), 3.85 and 3.84 (2s, 2OCH₃), 3.45–3.35, 3.03–2.75, 2.66–2.56, and 2.56–2.46 (4m, 1 + 3 + 1 + 1H), 2.27–2.12 (m, 1.7H), 2.03 (dt, J = 14.8/3.3 Hz, 0.7H), 1.99–1.91 and 1.89–1.78 (2m, 0.3 + 0.9H), 1.77–1.63, 1.53–1.43, and 1.41–1.12 (3m, 1 + 3 + 3.4H) ppm; ¹³C NMR (100 MHz): $\delta = 149.23$, 148.03, 135.30, 134.99, 121.69, 120.77, 118.15, 112.75, 112.51, 88.18, 88.10, 69.11, 64.52, 56.18, 55.97, 50.90, 50.48, 50.13, 49.85, 48.13, 43.30, 39.61, 39.54, 33.67, 30.13, 28.39, 27.84, 27.26, 26.57, 25.20, 24.25, 22.23, 19.09 ppm.

$\label{eq:logithty} \begin{array}{l} 1-[2-(2-Iodo-4,5-methylenedioxyphenyl)ethyl]octahydroindole-7a-carbonitrile \\ (3:1\ mixture\ of\ diastereomers)\ (\textbf{7d},\ C_{18}H_{21}IN_2O_2) \end{array}$

6d 339 mg (0.74 mmol), 25 cm³ H₂O, 2*N* HCl 0.74 cm³ (1.48 mmol), KCN 96 mg (1.48 mmol)/3 cm³ H₂O; yield: 308 mg (98%) light yellow oil; TLC (Al₂O₃; *n*-hexane: Et_2 O = 9:1): R_f = 0.61; IR (film): $\bar{\nu}$ = 2251, 2214 (C=N) cm⁻¹; MS (CI): *m/z* (%) = 398 (M^{+•} + 1 - HCN, 98), 271 (29), 270 (28), 163 (14), 136 (100); ¹H NMR (500 MHz): δ = 7.22 (s, arom H), 6.76 and 6.75 (2s, 0.25 + 0.75 arom H), 5.95–5.94 (d, *J* = 1.4 Hz, OCH₂O), 3.44–3.34, 3.00–2.81, and 2.81–2.73 (3m, 1 + 2 + 1H), 2.64–2.51 and 2.51–2.43 (2m, 1 + 1H), 2.26–2.12 (m, 1.75H), 2.03 (dt, *J* = 14.5/3.5 Hz, 0.75H), 1.99–1.89 and 1.89–1.77 (2m, 0.25 + 0.75H), 1.77–1.63 and 1.42–1.11 (2m, 4 + 3.5H) ppm; ¹³C NMR (125 MHz): δ = 148.34, 146.87, 136.06, 135.77, 120.68, 118.51, 118.10, 109.71, 109.53, 101.46, 87.82, 87.69, 69.02, 64.49, 50.78, 50.37, 50.10, 49.78, 48.02, 43.28, 39.80, 39.67, 33.60, 30.13, 28.36, 27.79, 27.22, 26.53, 25.15, 24.26, 22.27, 19.05 ppm.

1-[3-(2-Iodo-4,5-dimethoxyphenyl)propyl]octahydroindole-7a-carbonitrile (7:3 mixture of diastereomers) (**7e**, C₂₀H₂₇IN₂O₂)

6e 713 mg (1.31 mmol), 50 cm³ H₂O, 2*N* HCl 1.40 cm³ (2.60 mmol), KCN 169 mg (2.60 mmol)/5 cm³ H₂O; yield: 554 mg (93%) light yellow oil; TLC (Al₂O₃; *n*-hexane: $Et_2O = 9:1$): $R_f = 0.61$; IR (film): $\bar{\nu} = 2213$ (C \equiv N) cm⁻¹; MS (CI): m/z (%) = 428 (M^{+•} + 1 - HCN, 100), 300 (22), 137 (26), 136 (24); ¹H NMR (400 MHz): $\delta = 7.21$, 7.20, 6.73, and 6.72 (4s, 0.7 + 0.3 + 0.3 + 0.7 arom H), 3.86, 3.85, and 3.84 (3s, 2.1 + 0.9 + 3H, 2OCH₃), 3.39 and 3.32 (2dt, J = 9.2/6.1 and 9.3/6.3 Hz, 0.7 + 0.3H), 2.86–2.70, 2.66–2.54, and 2.54–2.38 (3m, 2 + 1 + 2H), 2.31–2.24, 2.21–2.07, and 1.97–1.88 (3m, 0.7 + 1.7 + 0.3H), 1.88–1.71 and 1.71–1.56 (2m, 3.9 + 2H), 1.56–1.39 and 1.38–1.20 (2m, 3.1 + 1.3H) ppm; ¹³C NMR (100 MHz): $\delta = 149.38$, 149.30, 147.76, 137.29, 137.10, 121.69, 120.70, 118.13, 112.15, 111.98, 87.93, 69.19, 64.65, 56.16, 55.95, 49.84, 49.77, 49.43, 49.34, 48.13, 43.45, 38.57, 38.29, 33.73, 30.02, 29.53, 29.19, 28.53, 27.63, 27.29, 26.43, 25.27, 24.34, 22.37, 19.45 ppm.

General Procedure for the Synthesis of cis-Erythrinanes 8 by Intramolecular Brylants Reaction

To a solution of aminonitrile **7** (1 molequiv.) in dry *THF* was added a solution of 2*M i*-*Pr*MgCl (1.05 molequiv.) in the same solvent at -50° C under N₂. After stirring at -50° C for an additional hour the mixture was slowly warmed up to ambient temperature during 3–4 h and then refluxed under N₂ at 60°C for 3 h. The cold mixture was poured into 30 cm³ of H₂O, rendered alkaline with an aqueous solution of Na₂CO₃ and extracted with 3 × 30 cm³ of *Et*₂O. The combined organic layers were dried (Na₂SO₄) and evaporated *in vacuo*. The residue was purified by FC (eluents were the same as used for TLC).

cis-Erythrinane (8a)

7b 204 mg (0.54 mmol), 2*M i*-*Pr*MgCl 0.28 cm³ (0.56 mmol), *THF* 5 cm³; yield: 91 mg (75%) light yellow oil [19]; TLC (CH₂Cl₂:CH₃OH = 100:7): $R_{\rm f}$ = 0.47; MS (EI): m/z (%) = 227 (M^{+•}, 23), 184 (100), 170 (31); ¹H NMR (400 MHz): δ = 7.24 (dd, J = 7.9/1.2 Hz, 14-H), 7.16–7.12 (m, 15-H), 7.06 (dt, J = 7.4/1.2 Hz, 16-H), 7.01 (m, 17-H), 3.27–3.03 (m, 4H), 2.86 (dt, J = 10.2/3.1 Hz, 1H), 2.44–2.34 (m, 1H), 2.34–2.27 (m, CH), 1.98–1.96 (m, 1H), 1.78–1.64 and 1.62–1.41 (2m, 2 + 5H), 1.41–1.35 (dt, J = 12.0/3.4 Hz, 1H), 1.31–1.23 (m, 1H) ppm; ¹³C NMR (100 MHz): δ = 144.47, 134.96, 128.89, 125.89, 125.50, 125.37, 64.54, 46.46, 43.59, 40.45, 35.90, 28.99, 28.69, 24.97, 21.93, 21.42 ppm.

15,16-Dimethoxy-cis-erythrinane (8b)

7c 215 mg (0.49 mmol), 2M *i*-*Pr*MgCl 0.26 cm³ (0.52 mmol), *THF* 5 cm³; yield: 109 mg (78%) light yellow oil [28]; TLC (CH₂Cl₂:CH₃OH:25% NH₃ = 100:5:0.5): $R_f = 0.36$; MS (EI): m/z (%) = 287 (M^{+•}, 24), 244 (100), 230 (24); ¹H and ¹³C NMR data were in line with those published in Refs. [4] and [5].

15,16-Methylenedioxy-cis-erythrinane (8c)

7d 200 mg (0.47 mmol), 2*M i*-*Pr*MgCl 0.25 cm³ (0.50 mmol), *THF* 5 cm³; yield: 91 mg (71%) light yellow oil [20]; TLC (CH₂Cl₂:CH₃OH:25% NH₃ = 100:5:0.5): R_f = 0.34; MS (EI): m/z (%) = 271 (M⁺•, 22), 228 (100), 214 (25); ¹H NMR (500 MHz): δ = 6.71 (s, 14-H), 6.48 (s, 17-H), 5.88 and 5.87 (2d, each J = 1.3 Hz, OCH₂O), 3.22–3.13 and 3.12–3.02 (2m, each 2H), 2.84 (dt, J = 10.3/2.8 Hz, 1H), 2.30 (m, 1H), 2.25–2.18 (dt, J = 11.0/6.1 Hz, CH), 1.96–1.89 (m, 1H), 1.77–1.71 (dt, J = 12.7/3.7 Hz, 1H), 1.70–1.63 and 1.63–1.42 (2m, 1+5H), 1.40–1.32 (tt, J = 12.6/3.7 Hz, 1H), 1.32–1.24 (m, 1H) ppm (see also Ref. [4]; ¹³C NMR (125 MHz): δ = 145.83, 145.34, 137.02, 127.73, 108.19, 105.74, 100.48, 65.05, 46.21, 43.67, 40.28, 35.73, 28.85, 28.45, 25.00, 21.93, 21.39 ppm.

References

- [1] Reimann E, Ettmayr C (2004) Monatsh Chem (in press)
- [2] Reimann E, Ettmayr C, Polborn K (2004) Monatsh Chem 135: 557
- [3] Boymond L, Rottländer M, Cahiez G, Knochel P (1998) Angew Chem 110: 1801
- [4] Mondon A, Seidel PR (1971) Chem Ber 104: 2937
- [5] Ahmed-Schofield R, Mariano PS (1987) J Org Chem 52: 1478
- [6] Tsuda Y, Sano T (1996) The Alkaloids, vol 58. Academic Press, p 249
- [7] PCMODEL V 7.5, Serena Software, Box 3076, Bloomington, IN 47402-3076, USA
- [8] Eliel EL, Samuel HW (1994) Stereochemistry of Organic Compounds. Wiley, p 764
- [9] Kihara M, Miyake Y, Iitomi M, Kobayashi S (1985) Chem Pharm Bull 33: 1260
- [10] Moss RA, Chatterjee BW, Wilk W (1986) J Org Chem 51: 4303
- [11] Bellamy AJ, Kerr JB, MacGregor CJ, MacKirdy IS (1982) J Chem Soc Perkin Trans 2, 161
- [12] Fowler JS, MacGregor RR, Wolf AP (1976) J Med Chem 19: 356
- [13] Wolfe JP, Renneis RA, Bulchwald SL (1996) Tetrahedron 52: 7525
- [14] Hays SJ, Caprathe BW, Gilmore JL, Amin N, Emmerling MR, Michael W, Nadimpalli R, Nath R, Raser KJ, Stafford D, Watson D, Wang K, Jaen JC (1998) J Med Chem 41: 1060
- [15] Kihara M, Kobayashi S (1978) Chem Pharm Bull 26: 155
- [16] Tietze LF, Schirok H (1999) J Am Chem Soc **121**: 10264
- [17] Segre A, Viterbo R, Parisi G (1957) J Am Chem Soc 79: 3503
- [18] King JF, Yuyitung G, Gill MS, Stewart JC, Payne NC (1998) Can J Chem 76: 164
- [19] Mondon A (1959) Chem Ber 92: 1461
- [20] Mondon A, Hasselmeyer G, Zander J (1959) Chem Ber 92: 2543